
Chapter 11. Creating

and Using Objects

In This Chapter

In this chapter we are going to get familiar with the basic concepts of object-

oriented programming – classes and objects – and we are going to explain

how to use classes from the standard libraries of .NET Framework. We are

going to mention some commonly used system classes and see how to create

and use their instances (objects). We are going to discuss how we can

access fields of an object, how to call constructors and how to work with

static fields in classes. Finally, we are going to get familiar with the term

"namespaces" – how they help us, how to include them and use them.

Classes and Objects

Over the last few decades programming and informatics have experienced

incredible growth and concepts, which have changed the way programs, are

built. Object-oriented programming (OOP) introduces such radical idea.

We are going to make a short introduction to the principles of OOP and the

concepts used in it. Firstly, we are going to explain what classes and objects

are. These two terms are basic for OOP and inseparable part from the life of

any modern programmer.

What Is Object-Oriented Programming?

Object-oriented programming (OOP) is a programming paradigm, which uses

objects and their interactions for building computer programs. Thus an easy

to understand, simple model of the subject area is achieved, which gives an

opportunity to the programmer to solve intuitively (by simple logic) many of

the problems, which occur in the real world.

For now we are not going to get into details what the goals and the

advantages of OOP are, as well as explaining in details the principles for

building hierarchies of classes and objects. We are going to mention only that

programming techniques of OOP often include encapsulation, abstraction,

polymorphism and inheritance. These techniques are out of the goals of

the current chapter and we are going to consider them later in the chapter

"Principles of Object-Oriented Programming". Now we will focus on objects as

a basic concept in OOP.

386 Fundamentals of Computer Programming with C#

What Is an Object?

We are going to introduce the concept object in the context of OOP. Software

objects model real world objects or abstract concepts (which are also

regarded as objects).

Examples of real-world objects are people, cars, goods, purchases, etc.

abstract objects are concepts in an object area, which we have to model and

use in a computer program. Examples of abstract objects are the data

structures stack, queue, list and tree. They are not going to be a subject in

this chapter, but we are going to see them in details in the next chapters.

In objects from the real world (as well as in the abstract objects) we can

distinguish the following two groups of their characteristics:

- States – these are the characteristics of the object which define it in a

way and describe it in general or in a specific moment

- Behavior – these are the specific distinctive actions, which can be done

by the object.

Let’s take for example an object from the real world – "dog". The states of the

dog can be "name", "fur color" and "breed", and its behavior – "barking",

"sitting" and "walking".

Objects in OOP combine data and the means for their processing in one. They

correspond to objects in real world and contain data and actions:

- Data members – embedded in objects variables, which describe their

states.

- Methods – we have already considered them in details. They are a tool

for building the objects.

What Is a Class?

The class defines abstract characteristics of objects. It provides a structure

for objects or a pattern which we use to describe the nature of something

(some object). Classes are building blocks of OOP and are inseparably

related to the objects. Furthermore, each object is an instance of exactly

one specific class.

We are going to give as an example a class and an object, which is its

instance. We have a class Dog and an object Lassie, which is an instance of

the class Dog (we say it is an object of type Dog). The class Dog describes the

characteristics of all dogs whereas Lassie is a certain dog.

Classes provide modularity in object-oriented programs. Their characteristics

have to be meaningful in a common context so that they could be understood

by people who are familiar with the problem area and are not programmers.

For instance, the class Dog cannot have (or at least should not) a

characteristic "RAM" because in the context of this class such characteristic

has no meaning.

Chapter 11. Creating and Using Objects 387

Classes, Attributes and Behavior

The class defines the characteristics of an object (which we are going to

call attributes) and its behavior (actions that can be performed by the

object). The attributes of the class are defined as its own variables in its body

(called member variables). The behavior of objects is modeled by the

definition of methods in classes.

We are going to illustrate the foregoing explanations through an example of

a real-world definition of a class. Let’s return to the example with the dog.

We would like to define a class Dog that models the real object "dog". The

class is going to include characteristics which are common for all dogs (such

as breed and fur color), as well as typical for the dog behavior (such are

barking, sitting, walking). In this case we are going to have attributes breed

and furColor, and the behavior is going to be implemented by the methods

Bark(), Sit() and Walk().

Objects – Instances of Classes

From what has been said till now we know that each object is an instance of

just one class and is created according to a pattern of this class. Creating the

object of a defined class is called instantiation (creation). The instance is

the object itself, which is created runtime.

Each object is in instance of a specific class. This instance is characterized by

state – set of values, associated with class attributes.

In the context of such behavior the object consists of two things: current

state and behavior defined in the class of the object. The state is specific for

the instance (the object), but the behavior is common for all objects which

are instances of this class.

Classes in C#

So far we have considered several common characteristics of OOP. A great

part of the modern programming languages are object-oriented. Each of

them has particular features for working with classes and objects. In this book

we are going to focus only one of these languages – C#. It is good to know

that the knowledge of OOP in C# would be useful to the reader no matter

which object-oriented language he uses in practice. That is because OOP is a

fundamental concept in programming, used by virtually all modern prog-

ramming languages.

What Are Classes in C#?

A class in C# is defined by the keyword class, followed by an identifier

(name) of the class and a set of data members and methods in a separate

code block.

Classes in C# can contain the following elements:

388 Fundamentals of Computer Programming with C#

- Fields – member-variables from a certain type;

- Properties – these are a special type of elements, which extend the

functionality of the fields by giving the ability of extra data management

when extracting and recording it in the class fields. We are going to

focus on them in the chapter "Defining Classes";

- Methods – they implement the manipulation of the data.

An Example Class

We are going to give an example of a class in C#, which contains the listed

elements. The class Cat models the real-world object "cat" and has the

properties name and color. The given class defines several fields, properties

and methods, which we are going to use later. You can now see the definition

of the class (we are not going to consider in details the definition of the

classes – we are going to focus on that in the chapter "Defining Classes"):

public class Cat
{
 // Field name
 private string name;
 // Field color
 private string color;

 public string Name
 {
 // Getter of the property "Name"
 get
 {
 return this.name;
 }
 // Setter of the property "Name"
 set
 {
 this.name = value;
 }
 }

 public string Color
 {
 // Getter of the property "Color"
 get
 {
 return this.color;
 }
 // Setter of the property "Color"

Chapter 11. Creating and Using Objects 389

 set
 {
 this.color = value;
 }
 }

 // Default constructor
 public Cat()
 {
 this.name = "Unnamed";
 this.color = "gray";
 }

 // Constructor with parameters
 public Cat(string name, string color)
 {
 this.name = name;
 this.color = color;
 }

 // Method SayMiau
 public void SayMiau()
 {
 Console.WriteLine("Cat {0} said: Miauuuuuu!", name);
 }
}

The example class Cat defines the properties Name and Color, which keep

their values in the hidden (private) fields name and color. Furthermore, two

constructors are defined for creating instances of the class Cat, respectively

with and without parameters, and a method of the class SayMiau().

After the example class is defined we can now use it in the following way:

static void Main()
{
 Cat firstCat = new Cat();
 firstCat.Name = "Tony";
 firstCat.SayMiau();

 Cat secondCat = new Cat("Pepy", "red");
 secondCat.SayMiau();
 Console.WriteLine("Cat {0} is {1}.",
 secondCat.Name, secondCat.Color);
}

390 Fundamentals of Computer Programming with C#

If we execute the example, we are going to get the following output:

Cat Tony said: Miauuuuuu!
Cat Pepy said: Miauuuuuu!
Cat Pepy is Red.

We saw a simple example for defining and using classes, and in the section

"Creating and Using Objects" we are going to explain in details how to create

objects, how to access their properties and how to call their methods and this

is going to allow us to understand how this example works.

System Classes

Calling the method Console.WriteLineſ…ƀ of the class System.Console is

an example of usage of a system class in C#. We call system classes the

classes defined in standard libraries for building applications with C# (or

another programming language). They can be used in all our .NET

applications (in particular those written in C#). Such are for example the

classes String, Environment and Math, which we are going to consider later.

As we already know from chapter "Introduction to Programming" the .NET

Framework SDK comes with a set of programming languages (like C# and

VB.NET), compilers and standard class library which provides thousands of

system classes for accomplishing the most common tasks in programming like

console-based input / output, text processing, collection classes, parallel

execution, networking, database access, data processing, as well as creating

Web-based, GUI and mobile applications.

It is important to know that the implementation of the logic in classes is

encapsulated (hidden) inside them. For the programmer it is important what

they do, not how they do it and for this reason a great part of the classes is

not publicly available (public). With system classes the implementation is

often not available at all to the programmer. Thus, new layers of

abstraction are created which is one of the basic principles in OOP.

We are going to pay special attention to system classes later. Now it is time to

get familiar with creating and using objects in programs.

Creating and Using Objects

For now we are going to focus on creating and using objects in our

programs. We are going to work with already defined classes and mostly with

system classes from .NET Framework. The specificities of defining our own

classes we are going to consider later in the chapter "Defining Classes".

Creating and Releasing Objects

The creation of objects from preliminarily defined classes during program

execution is performed by the operator new. The newly created object is

usually assigned to the variable from type coinciding with the class of the

Chapter 11. Creating and Using Objects 391

object (this, however, is not mandatory – read chapter "Principles of Object-

Oriented Programming"). We are going to note that in this assignment the

object is not copied, and only a reference to the newly created object is

recorded in the variable (its address in the memory). Here is a simple

example of how it works:

Cat someCat = new Cat();

The variable someCat of type Cat we assign the newly created instance of

the class Cat. The variable someCat remains in the stack, and its value (the

instance of the class Cat) remains in the managed heap:

Creating Objects with Set Parameters

Now we are going to consider a slightly different variant of the example above

in which we set parameters when creating the object:

Cat someCat = new Cat("Johnny", "brown");

In this case we would like the objects someCat to represent a cat whose name

is "Johnny" and is brown. We indicate this by using the words "Johnny" and

"brown", written in the brackets after the name of the class.

When creating an object with the operator new, two things happen: memory is

set aside for this object and its data members are initialized. The

initialization is performed by a special method called constructor. In the

example above the initializing parameters are actually parameters of the

constructor of the class.

We are going to discuss constructors after a while. As the member variables

name and color of the class Cat are of reference type (of the class String),

they are also recorded in the dynamic memory (heap) and in the object

itself are kept their references (addresses / pointers).

The following figure illustrates how the Cat object is represented in the

computer memory (arrows illustrated the references from one object to

another):

HeapStack

Cat@6e278a

someCat

(Cat members)

392 Fundamentals of Computer Programming with C#

Releasing the Objects

An important feature of working with objects in C# is that usually there is no

need to manually destroy them and release the memory taken up by them.

This is possible because of the embedded in .NET CLR system for cleaning the

memory (garbage collector) which takes care of releasing unused objects

instead of us. Objects to which there is no reference in the program at certain

moment are automatically released and the memory they take up is

released. This way many potential bugs and problems are prevented. If we

would like to manually release a certain object, we have to destroy the

reference to it, for example this way:

someCat = null;

This does not destroy the object immediately, but puts it in a state in which it

is inaccessible to the program and the next time the garbage collector cleans

the memory it is going to be released:

HeapStack

Cat@6e278a

someCat
name:

String@a272e8

color:

String@852fa4

Johny

brown

HeapStack

Cat@6e278a

someCat
name:

String@a272e8

color:

String@852fa4

Johny

brown

Chapter 11. Creating and Using Objects 393

Access to Fields of an Object

The access to the fields and properties of a given object is done by the

operator . (dot) placed between the names of the object and the name of

the field (or the property). The operator . is not necessary in case we access

field or property of given class in the body of a method of the same class.

We can access the fields and the properties either to extract data from

them, or to assign new data. In the case of a property the access is

implemented in exactly the same way as in the case of a field – C# give us

this ability. This is achieved by the keywords get and set in the definition of

the property, which perform respectively extraction of the value of the

property and assignment of a new value. In the definition of the class Cat

(given above) the properties are Name and Color.

Access to the Memory and Properties of an Object – Example

We are going to give an example of using a property of an object, as well as

using the already defined above class Cat. We create an instance myCat of the

class Cat and assign "Alfred" to the property Name. After that we print on

the standard output a formatted string with the name of our cat. You can see

an implementation of the example:

class CatManipulating
{
 static void Main()
 {
 Cat myCat = new Cat();
 myCat.Name = "Alfred";

 Console.WriteLine("The name of my cat is {0}.",
 myCat.Name);
 }
}

Calling Methods of Objects

Calling the methods of a given object is done through the invocation

operator () and with the help of the operator . (dot). The operator dot is

not obligatory only in case the method is called in the body of another method

of the same class. Calling a method is performed by its name followed by ()

or (<parameters>) for the case when we pass it some arguments. We

already know how to invoke methods from the chapter "Methods".

Now is the moment to mention the fact that methods of classes have access

modifiers public, private or protected with which the ability to call them

could be restricted. We are going to consider these modifiers in the chapter

"Defining Classes". For now it enough to know that the access modifier

394 Fundamentals of Computer Programming with C#

public does not introduce any restrictions for calling the method, i.e. makes

it publicly available.

Calling Methods of Objects – Example

We are going to complement the example we already gave as we call the

method SayMiau of the class Cat. Here is the result:

class CatManipulating
{
 static void Main()
 {
 Cat myCat = new Cat();
 myCat.Name = "Alfred";

 Console.WriteLine("The name of my cat is {0}.",myCat.Name);
 myCat.SayMiau();
 }
}

After executing the program above the following text is going to be printed on

the standard output:

The name of my cat is Alfred.
Cat Alfred said: Miauuuuuu!

Constructors

The constructor is a special method of the class, which is called

automatically when creating an object of this class, and performs

initialization of its data (this is its purpose). The constructor has no type of

returned value and its name is not random, and mandatorily coincides with

the class name. The constructor can be with or without parameters. A

constructor without parameters is also called parameterless constructor.

Constructor with Parameters

The constructor can take parameters as well as any other method. Each

class can have different count of constructors with one only restriction – the

count and type of their parameters have to be different (different signature).

When creating an object of this class, one of the constructors is called.

In the presence of several constructors in a class naturally occurs the question

which of them is called when the object is created. This problem is solved in a

very intuitive way as with methods. The appropriate constructor is chosen

automatically by the compiler according to the given set of parameters when

creating the object. We use the principle of the best match.

Chapter 11. Creating and Using Objects 395

Calling Constructors – Example

Lets' take a look again at the definition of the class Cat and more particularly

at the two constructors of the class:

public class Cat
{
 // Field name
 private string name;
 // Field color
 private string color;

 …

 // Parameterless constructor
 public Cat()
 {
 this.name = "Unnamed";
 this.color = "gray";
 }

 // Constructor with parameters
 public Cat(string name, string color)
 {
 this.name = name;
 this.color = color;
 }

 …
}

We are going to use these constructors to illustrate the usage of constructors

with and without parameters. For the class Cat defined that way we are going

to give an example of creating its instances by each of the two constructors.

One of the objects is going to be an ordinary undefined cat, and the other –
our brown cat Johnny. After that we are going to execute the method SayMiau

for each of the cats and analyze the result. Source code follows:

class CatManipulating
{
 static void Main()
 {
 Cat someCat = new Cat();

 someCat.SayMiau();
 Console.WriteLine("The color of cat {0} is {1}.",

396 Fundamentals of Computer Programming with C#

 someCat.Name, someCat.Color);

 Cat someCat = new Cat("Johnny", "brown");

 someCat.SayMiau();
 Console.WriteLine("The color of cat {0} is {1}.",
 someCat.Name, someCat.Color);
 }
}

As a result of the program’s execution the following text is printed on the

standard output:

Cat Unnamed said: Miauuuuuu!
The color of cat Unnamed is gray.
Cat Johnny said: Miauuuuuu!
The color of cat Johnny is brown.

Static Fields and Methods

The data members, which we considered up until, now implement states of

the objects and are directly related to specific instances of the classes. In

OOP there are special categories fields and methods, which are associated

with the data type (class), and not with the specific instance (object). We call

them static members because are independent of concrete objects.

Furthermore, they are used without the need of creating an instance of the

class in which they are defined. They can be fields, methods and constructors.

Let’s consider shortly static members in C#.

A static field or method in a given class is defined with the keyword

static, placed before the type of the field or the type of returned value of the

method. When defining a static constructor, the word static is placed before

the name of the constructor. Static constructors are not going to be discussed

in this chapter – for now we are going to consider only static fields and

methods (the more curious readers can look up in MSDN).

When to Use Static Fields and Methods?

To find the answers of this question we have to understand very well the

difference between static and non-static members. We are going to consider

into details what it is.

We have already explained the main difference between the two types of

members. Let’s interpret the class as a category of objects, and the

object as a representative of this category. Then the static members

reflect the state and the behavior of the category itself, and the non-static the

state and the behavior of the separate representatives of the category.

Chapter 11. Creating and Using Objects 397

Now we are going to pay special attention to the initialization of static and

non-static fields. We already know that non-static fields are initialized with

the call to the constructor of the class when creating an instance of it – either

inside the body of the constructor, or outside. However, the initialization of

static fields cannot be performed when the object of the class is created,

because they can be used without a created instance of the class. It is

important to know the following:

Static fields are initialized when the data type (the class) is

used for the first time, during the execution of the program.

Now we shall see how to use static fields and methods in practice.

Static Fields and Methods – Example

The example, which we are going to give, solves the following simple

problem: we need a method that every time returns a value greater with one

than the value returned at the previous call of the method. We choose the

first returned value to be 0. Obviously this method generates the sequence of

natural number. Similar functionality is widely used in practice, for example,

for uniform numbering of objects. Now we are going to see how this could be

implemented with the means of OOP.

Let’s assume that the method is called NextValue() and is defined in a class

called Sequence. The class has a field currentValue from type int, which

contains the last returned value by the method. We would like the following

two actions to be performed consecutively in the method body: the value of

the field to be increased and its new value to be returned as a result.

Obviously the returned by the method value does not depend on the concrete

instance of the class Sequence. For this reason the method and the field are

static. You can now see the described implementation of the class:

public class Sequence
{
 // Static field, holding the current sequence value
 private static int currentValue = 0;

 // Intentionally deny instantiation of this class
 private Sequence()
 {
 }

 // Static method for taking the next sequence value
 public static int NextValue()
 {
 currentValue++;
 return currentValue;

398 Fundamentals of Computer Programming with C#

 }
}

The observant reader has noticed that the so defined class has a default

constructor, which is declared as private. This usage of a constructor may

seem strange, but is quite deliberate. It is good to know the following:

A class that has only private constructors cannot be

instantiated. Such class usually has only static members and

is called "utility class".

For now we are not going to go into details about the access modifiers

public, private and protected. We shall explain them comprehensively in

the chapter "Defining Classes".

Let’s take a look at a simple program, which uses the class Sequence:

class SequenceManipulating
{
 static void Main()
 {
 Console.WriteLine("Sequence[1...3]: {0}, {1}, {2}",
 Sequence.NextValue(), Sequence.NextValue(),
 Sequence.NextValue());
 }
}

The example prints on the standard output the first three natural numbers by

triple consecutive call of the method NextValue() of the class Sequence. The

result from this code is the following:

Sequence[1...3]: 1, 2, 3

If we try to create several different sequences, as the constructor of the class

Sequence is declared private, we are going to get compile time error.

Examples of System C# Classes

After we got acquainted with the basic functionality of objects, we are going

to consider briefly several commonly used system classes from the

standard library of .NET Framework. This way we are going to see in practice

the so far explained material, and also show how system classes ease our

every-day work.

The System.Environment Class

We start with one of the basic system classes in .NET Framework:

System.Environment. It contains a set of useful fields and methods, which

Chapter 11. Creating and Using Objects 399

ease getting information about the hardware and the operating system, and

some of them, give the ability to interact with the program environment. Here

is a part of the functionality provided by this class:

- Information about the processors count, the computer network name,

the version of the operating system, the name of the current user, the

current directory, etc.

- Access to externally defined properties and environment variables,

which we are not going to consider in this book.

Now we are going to show one interesting application of a method of the class

Environment, which is commonly used in practice when developing programs

with critical fast performance. We are going to detect the time needed for the

execution of the source code with the help of the property TickCount. Here it

is how it works:

class SystemTest
{
 static void Main()
 {
 int sum = 0;
 int startTime = Environment.TickCount;

 // The code fragment to be tested
 for (int i = 0; i < 10000000; i++)
 {
 sum++;
 }

 int endTime = Environment.TickCount;
 Console.WriteLine("The time elapsed is {0} sec.",
 (endTime - startTime) / 1000.0);
 }
}

The static property TickCount of the class Environment returns as a result

the count of milliseconds that have passed since the computer is on until the

time of the method call. With its help we detect the milliseconds past before

and after the execution of the source code. Their difference is the wanted

time for the execution of the fragment source code measured in milliseconds.

As a result of the execution of the program on the standard output we print

the result of the following type (the measured time varies according to the

current computer configuration and its load):

The time elapsed is 0.031 sec.

400 Fundamentals of Computer Programming with C#

In the example we have used two static members of two system classes: the

static property Environment.TickCount and the static method Console.
WriteLineſ…ƀ.

The System.String Class

We have already met the String (System.String) class of .NET Framework,

which represents strings. Let’s recall that we can think of strings as a

primitive data type in C#, although the work with them is different from the

work with different primitive data types (integers, floating point numbers,

Boolean variables, etc.). We are going to describe them in details in the

chapter "Strings and Text Processing".

The System.Math Class

The System.Math class contains methods for performing basic numeric and

mathematical operations such as raising a number to a power, taking a

logarithm and square root, and some trigonometric functions. We are going to

give a simple example, which illustrates its usage.

We want to make a program, which calculates the area of a triangle by given

two sides and an angle between them in degrees. Therefore we need the

method Sinſ…ƀ and the constant PI of the class Math. With the help of the π

number we can easily convert to radians the entered in degrees angle. You

can see an example implementation of the described logic:

class MathTest
{
 static void Main()
 {
 Console.WriteLine("Length of the first side:");
 double a = double.Parse(Console.ReadLine());
 Console.WriteLine("Length of the second side:");
 double b = double.Parse(Console.ReadLine());
 Console.WriteLine("Size of the angle in degrees:");
 int angle = int.Parse(Console.ReadLine());

 double angleInRadians = Math.PI * angle / 180.0;
 Console.WriteLine("Area of the triangle: {0}",
 0.5 * a * b * Math.Sin(angleInRadians));
 }
}

We can easily test the program if we check whether it calculates correctly the

area of an equilateral triangle. For further convenience we choose the

length of the side to be 2 – then we find the area with the well-known

formula:

Chapter 11. Creating and Using Objects 401

...7320508,132
4

3 2 S

We enter consecutively the numbers 2, 2, 60 and on the standard output we

can see:

Face of the triangle: 1.73205080756888

Depending on your system localization (Region and Language Settings) your

output might be "1,73205080756888" or "1.73205080756888". You might fix

the decimal point to "." by this line of code, executed at your program start:

System.Threading.Thread.CurrentThread.CurrentCulture =
 System.Globalization.CultureInfo.InvariantCulture;

The System.Math Class – More Examples

As we already saw, apart from mathematical methods, the Math class also

defines two well known in mathematics constants: the trigonometric constant

π and the Euler’s number e. Here is an example with them:

Console.WriteLine(Math.PI);
Console.WriteLine(Math.E);

When executing the code above, we get the following output:

3.141592653589793
2.718281828459045

The System.Random Class

Sometimes in programming we have to use random numbers. For instance,

we would like to generate 6 random numbers in the range 1 to 49 (not

necessarily unequal). This could be done by using the System.Random class

and its method Next(). Before we use the Random class we have to create

instance of it, at which point it is initialized with a random value (derived from

the current system time in the operating system). After that we can randomly

generate a number in the range [0…nƀ by calling the method Next(n). Notice

that this method can return zero, but always returns a random number

smaller than the set value n. Therefore, if we would like to get a number in

the range [ɨ…ɫ9], we have to use the expression Next(49) + 1.

Below is an example source code of a program, which generates 6 random

numbers in the range from 1 to 49 by using the Random class (note that it is

not guaranteed that the numbers are unique like in the classical Bulgarian

lottery TOTO 6/49):

402 Fundamentals of Computer Programming with C#

class RandomNumbersBetween1And49
{
 static void Main()
 {
 Random rand = new Random();
 for (int number = 1; number <= 6; number++)
 {
 int randomNumber = rand.Next(49) + 1;
 Console.Write("{0} ", randomNumber);
 }
 }
}

Here is how a possible output of the program looks like:

16 49 7 29 1 28

The System.Random Class – Generating a Random Password

To show you how useful the random numbers generator in .NET

Framework can be, we are going to set as a task to generate a random

password which is between 8 and 15 characters long, contains at least two

capital letters, at least two small letters, at least one digit and at least three

special chars. For this purpose we are going to use the following algorithm:

1. We start with an empty password. We create a generator of random

numbers.

2. We generate twice a random capital letter and place it at a random

position in the password.

3. We generate twice a random small letter and place it at a random

position in the password.

4. We generate twice a random digit and place it at a random position in

the password.

5. We generate three times a random special character and place it at a

random position in the password.

6. Until this moment the password should consist of 8 characters. In order

to supplement it to 15 characters at most, we can insert random count

of times (between 0 and 7) at a random position in the password a

random character (a capital letter, a small letter or a special char).

An implementation of the described algorithm is given below:

class RandomPasswordGenerator
{
 private const string CapitalLetters =

Chapter 11. Creating and Using Objects 403

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 private const string SmallLetters =
 "abcdefghijklmnopqrstuvwxyz";
 private const string Digits = "0123456789";
 private const string SpecialChars =
 "~!@#$%^&*()_+=`{}[]\\|':;.,/?<>";
 private const string AllChars =
 CapitalLetters + SmallLetters + Digits + SpecialChars;

 private static Random rnd = new Random();

 static void Main()
 {
 StringBuilder password = new StringBuilder();

 // Generate two random capital letters
 for (int i = 1; i <= 2; i++)
 {
 char capitalLetter = GenerateChar(CapitalLetters);
 InsertAtRandomPosition(password, capitalLetter);
 }

 // Generate two random small letters
 for (int i = 1; i <= 2; i++)
 {
 char smallLetter = GenerateChar(SmallLetters);
 InsertAtRandomPosition(password, smallLetter);
 }

 // Generate one random digit
 char digit = GenerateChar(Digits);
 InsertAtRandomPosition(password, digit);

 // Generate 3 special characters
 for (int i = 1; i <= 3; i++)
 {
 char specialChar = GenerateChar(SpecialChars);
 InsertAtRandomPosition(password, specialChar);
 }

 // Generate few random characters (between 0 and 7)
 int count = rnd.Next(8);
 for (int i = 1; i <= count; i++)
 {

404 Fundamentals of Computer Programming with C#

 char specialChar = GenerateChar(AllChars);
 InsertAtRandomPosition(password, specialChar);
 }

 Console.WriteLine(password);
 }

 private static void InsertAtRandomPosition(
 StringBuilder password, char character)
 {
 int randomPosition = rnd.Next(password.Length + 1);
 password.Insert(randomPosition, character);
 }

 private static char GenerateChar(string availableChars)
 {
 int randomIndex = rnd.Next(availableChars.Length);
 char randomChar = availableChars[randomIndex];
 return randomChar;
 }
}

Let’s explain several unclear moments in the source code. Let’s start from the

definition of the constants:

private const string CapitalLetters =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
private const string SmallLetters =
 "abcdefghijklmnopqrstuvwxyz";
private const string Digits = "0123456789";
private const string SpecialChars =
 "~!@#$%^&*()_+=`{}[]\\|':;.,/?<>";
private const string AllChars =
 CapitalLetters + SmallLetters + Digits + SpecialChars;

Constants in C# are immutable variables whose values are assigned during

their initialization in the source code of the program and after that they

cannot be changed. They are declared with the modifier const. They are used

for defining a number or a string, which afterwards is used many times in the

program. This way repetition of certain values in the code is avoided and

these values can be easily altered by changing only one place in the code. For

example, if in a certain moment we decide that the character "," (comma)

should not be used when generating a password, we can change only one row

in the program (the corresponding constant) and the change is going to

reflect on every row where the constant is being used. In C# constants are

Chapter 11. Creating and Using Objects 405

written in Pascal Case (the words in the name, merged together, each of

them starts with an uppercase letter, and the rest of them are lowercase).

More about constants we will learn in the section "Constants" in the chapter

"Defining Classes".

Let’s explain how the other parts of the program work. In the beginning, as a

static member variable in the class RandomPasswordGenerator is created the

random number generator rnd. As this variable rnd is defined in the class

(not in the Main() method), it is accessible by the whole class (by each of its

methods), and as it is defined static, it is accessible by the static methods,

too. Thus, anywhere the program needs a random integer variable the same

random number generator is used. It is initialized when the class

RandomPasswordGenerator is loaded.

The method GenerateChar() returns a randomly chosen character in a set of

characters given as a parameter. It works very simply: it chooses a random

position in the set of characters (between 0 and the count of characters minus

1) and returns the characters at this position.

The method InsertAtRandomPosition() is not complicated too. It chooses a

random position in the StringBuilder object, which is passed and inserts on

this position the returned character. We are going to pay special attention to

the class StringBuilder in the chapter "Strings and Text Processing".

Here is a sample output of the program for generating passwords, which we

just considered (this output is different at each program run due to its

randomness by nature):

8p#Rv*yTl{tN4

Namespaces

Namespace (package) in OOP we call a container for a group of classes,

which are united by a common feature or are used in a common context. The

namespaces contribute to a better logical organization of the source code by

creating a semantic division of the classes in categories and makes easier

their usage in the source code. Now we are going to consider namespaces in

C# and are going to see how we can use them.

What Are Namespaces in C#?

Namespaces in C# are named groups of classes, which are logically

related without any specific requirement on how to be placed in the file

system. However, it is considered that the folder name should match the

namespace name and the names of the files should match the names of the

classes, which are defined in them. We have to note that in some

programming languages the compilation of the source code in a given

namespace depends on the distribution of the elements of the namespace in

folders and files on the disk. In Java, for instance, the described file

406 Fundamentals of Computer Programming with C#

organization is mandatory (if it is not followed, compilation errors occur). C#

is not so strict regarding this.

Now, let’s consider the mechanism for defining namespaces.

Defining Namespaces

In case we like to create a new namespace or a new class which belongs to a

given namespace, in Visual Studio this happens automatically by the

commands in the context menu of the Solution Explorer (on right click on the

corresponding folder). By default the Solution Explorer is visualized like a

Dock in the right part of the integrated environment. We are going to

illustrate how we could add a new class in the already existing namespace

MyNamespace by the context menu of Solution Explorer in Visual Studio:

As the project is called MyConsoleApplication and we are adding in its folder

MyNamespace, the newly created class is going to be in the following

namespace:

namespace MyConsoleApplication.MyNamespace

If we have defined a class in its own file and we like to add it in a new or

already existing namespace, it is not hard to do it manually. It is enough to

change the named block with a keyword namespace in the class:

Chapter 11. Creating and Using Objects 407

namespace <namespace_name>
{
 …
}

In the definition we use the keyword namespace, followed by the full name of

the namespace. It is considered that the namespaces in C# start with a

capital letter and are written in Pascal Case. For example, if we have to make

a namespace containing classes for string processing, it is desirable we name

it StringUtils, and not string_utils.

Nested Namespaces

Except classes, namespaces can contain other namespaces in themselves

(nested namespaces). This way, intuitively we create a hierarchy of

namespaces, which allows even more precise distribution of classes according

to their semantics.

When naming namespaces in the hierarchy we use the character . as a

separator (dot notation). For example, the namespace System from .NET

Framework contains in itself the sub-namespace Collections and thus the

full name of the nested namespace Collections is System.Collections.

Full Names of Classes

In order to absolutely understand the meaning of namespaces, it is important

for us to know the following:

Classes are required to have unique names only within the

namespaces, in which they are defined.

Outside a given namespace we can have classes with random names

regardless of whether they match with any of the names of classes in the

namespace. This is because classes in the namespace are uniquely defined in

its context. It is time to see how to define syntactically this uniqueness.

Full name of the class we call the first name of the class, preceded by the

name of the namespace in which it is defined. The full name of each class is

unique. Again we use dot notation:

<namespace_name>.<class_name>

Let’s take, for example, the system class CultureInfo, defined in the

namespace System.Globalization (we have already used it in the chapter

"Console Input and Output"). According to the definition, the full name of the

class is System.Globalization.CultureInfo.

408 Fundamentals of Computer Programming with C#

In .NET Framework sometimes there are classes from different namespaces

with matching names, for example:

System.Windows.Forms.Control
System.Web.UI.Control
System.Windows.Controls.Control

Inclusion of a Namespace

When building an application according to the object area, very often it is

necessary to use the classes of a namespace multiple times. For the

programmer’s convenience there is a mechanism for inclusion of a

namespace in the current file with a source code. After the given namespace

is included, all classes defined in it may be used without the need to use their

full names.

The inclusion of a namespace in the current source code file is executed with

the keyword using in the following way:

using <namespace_name>;

We are going to pay attention to an important feature of including

namespaces in the described way. All classes defined directly in the

namespace <namespace_name> are included and can be used, but we have to

know the following:

Inclusion of namespaces is not recursive, i.e. when including

a namespace the classes from the nested namespaces are

not included.

For example, the inclusion of namespaces System.Collections does not

automatically include the classes from its nested namespace System.
Collections.Generic. When used, either we have to apply their full names,

or to include the namespace, which contains them.

Using a Namespace – Example

In order to illustrate the principle of inclusion of a namespace, we are going to

consider the following program which reads numbers, saves them in lists and

counts how many of them are integer numbers and how many are double:

class NamespaceImportTest
{
 static void Main()
 {
 System.Collections.Generic.List<int> ints =
 new System.Collections.Generic.List<int>();

Chapter 11. Creating and Using Objects 409

 System.Collections.Generic.List<double> doubles =
 new System.Collections.Generic.List<double>();

 while (true)
 {
 int intResult;
 double doubleResult;
 Console.WriteLine("Enter an int or a double:");
 string input = Console.ReadLine();

 if (int.TryParse(input, out intResult))
 {
 ints.Add(intResult);
 }
 else if (double.TryParse(input, out doubleResult))
 {
 doubles.Add(doubleResult);
 }
 else
 {
 break;
 }
 }

 Console.Write("You entered {0} ints:", ints.Count);
 foreach (var i in ints)
 {
 Console.Write(" " + i);
 }
 Console.WriteLine();

 Console.Write("You entered {0} doubles:", doubles.Count);
 foreach (var d in doubles)
 {
 Console.Write(" " + d);
 }
 Console.WriteLine();
 }
}

For this purpose the program uses the class System.Collections.
Generic.List as it calls it by its full name.

Let’s see how the program above works: we enter consecutively the values 4,

1.53, 0.26, 7, 2, end. We get the following result on the standard output:

410 Fundamentals of Computer Programming with C#

You entered 3 ints: 4 7 2
You entered 2 doubles: 1.53 0.26

The program does the following: it gives the user the opportunity to enter

consecutively numbers, which may be integer or double. This continues until

the moment in which a value different from a number is entered. Then on the

standard output two rows are displayed, respectively with integer and double

numbers.

For the implementation of the described actions we use two helping objects

respectively of type System.Collections.Generic.List<int> and System.
Collections.Generic.List<double>. Obviously, the full names of the

classes make the code unreadable, and cause inconveniences. We can easily

avoid this effect by including the namespace System.Collections.Generic
and use directly the classes by name. You can now see the shortened version

of the program above:

using System.Collections.Generic;

class NamespaceImportTest
{
 static void Main()
 {
 List<int> ints = new List<int>();
 List<double> doubles = new List<double>();
 …
 }
}

Exercises

1. Write a program, which reads from the console a year and checks if it is

a leap year.

2. Write a program, which generates and prints on the console 10 random

numbers in the range [100, 200].

3. Write a program, which prints, on the console which day of the week is

today.

4. Write a program, which prints on the standard output the count of days,

hours, and minutes, which have passes since the computer is

started until the moment of the program execution. For the

implementation use the class Environment.

5. Write a program which by given two sides finds the hypotenuse of a

right triangle. Implement entering of the lengths of the sides from the

Chapter 11. Creating and Using Objects 411

standard input, and for the calculation of the hypotenuse use methods of

the class Math.

6. Write a program which calculates the area of a triangle with the

following given:

- three sides;

- side and the altitude to it;

- two sides and the angle between them in degrees.

7. Define your own namespace CreatingAndUsingObjects and place in it

two classes Cat and Sequence, which we used in the examples of the

current chapter. Define one more namespace and make a class, which

calls the classes Cat and Sequence, in it.

8. Write a program which creates 10 objects of type Cat, gives them names

CatN, where N is a unique serial number of the object, and in the end call

the method SayMiau() for each of them. For the implementation use the

namespace CreatingAndUsingObjects.

9. Write a program, which calculates the count of workdays between

the current date and another given date after the current (inclusive).

Consider that workdays are all days from Monday to Friday, which are not

public holidays, except when Saturday is a working day. The program

should keep a list of predefined public holidays, as well as a list of

predefined working Saturdays.

10. You are given a sequence of positive integer numbers given as string

of numbers separated by a space. Write a program, which calculates

their sum. Example: "43 68 9 23 318" 461.

11. Write a program, which generates a random advertising message for

some product. The message has to consist of laudatory phrase, followed

by a laudatory story, followed by author (first and last name) and city,

which are selected from predefined lists. For example, let’s have the

following lists:

- Laudatory phrases: {"The product is excellent.", "This is a great

product.", "I use this product constantly.", "This is the best product

from this category."}.

- Laudatory stories: {"Now I feel better.", "I managed to change.",

"It made some miracle.", "I can’t believe it, but now I am feeling

great.", "You should try it, too. I am very satisfied."}.

- First name of the author: {"Dayan", "Stella", "Hellen", "Kate"}.

- Last name of the author: {"Johnson", "Peterson", "Charls"}.

- Cities: {"London", "Paris", "Berlin", "New York", "Madrid"}.

Then the program would print randomly generated advertising message

like the following:

412 Fundamentals of Computer Programming with C#

I use this product constantly. You should try it, too. I am
very satisfied. -- Hellen Peterson, Berlin

12. * Write a program, which calculates the value of a given numeral

expression given as a string. The numeral expression consists of:

- real numbers, for example 5, 18.33, 3.14159, 12.6;

- arithmetic operations: +, -, *, / (with their standard priorities);

- mathematical functions: ln(x), sqrt(x), pow(x, y);

- brackets for changing the priorities of the operations: (and).

Note that the numeral expressions have priorities, for example the expression

-1 + 2 + 3 * 4 - 0.5 = (-1) + 2 + (3 * 4) - 0.5 = 12.5.

Solutions and Guidelines

1. Use DateTime.IsLeapYear(year).

2. Use the class Random. You may generate random numbers in the range

[100, 200] by calling Random.Next(100, 201).

3. Use DateTime.Today.DayOfWeek.

4. Use the property Environment.TickCount, in order to get the count of

passed milliseconds. Use the fact that one second has 1,000 milliseconds;

one minute has 60 seconds; one hour has 60 minutes and one day has

24 hours.

5. The hypotenuse of a rectangular triangle could be found with the

Pythagorean Theorem a2 + b2 = c2, where a and b are the two sides,

and c is the hypotenuse. Take square root of the two sides of the

equation in order to get the length of the hypotenuse. Use the Sqrtſ…ƀ

methods of the Math class.

6. For the first sub-problem of the task use the Heron’s Formula √ , where . For the second sub-problem use

the formula: . For the third sub-problem use the formula: . For the sine use the System.Math class.

7. Make a new project in Visual Studio, right click on the folder and
choose the menu Add New Folder. Then enter the name of the folder

and press [Enter], right click on the newly made folder and choose Add
 New Item… from the list choose Class, for the name of the new class

enter Cat and press [Add]. Change the definition of the newly created

class with the definition, which we gave to this chapter, to put the classes

in a namespace. Make the same to the class Sequence.

Chapter 11. Creating and Using Objects 413

8. Create an array with 10 elements of type Cat. Create 10 objects of type

Cat in a loop (use a constructor with parameters) and assign them to the

corresponding element of the array. For the serial number of the objects

use the method NextValue() of the Sequence class. In the end again in

an array use the method SayMiau() for each of the array elements.

9. Use the class System.DateTime and the methods in it. You can execute a

loop from the current date (DateTime.Now.Date) to the end date,

consecutively incrementing the day by the method AddDays(1) and count

the working days according to your country (e.g. all days except

Saturday and Sunday and a few fixed non-working official holidays).

Another approach that might work is to subtract the dates to find the

TimeSpan between them (DateTime values can be subtracted, just like a

numbers). This will give you the count of days between the dates. You

will need to perform some additional calculations to find how much

weekends are included in this count and discard them.

10. Use String.Split(' ') to split the string by spaces. Then use

Intɪɩ.Parseſ…ƀ to extract the separate numbers from the obtained

string array as int values and sum them.

11. Use the class System.Random and its method Nextſ…ƀ to select a random

laudatory phrase, laudatory story, first name, last name and city and

combine them.

12. Calculating a numeral expression is quite hard and is unlikely a

beginner programmer to solve it correctly without external help. As a

start check out the article in Wikipedia about the "Shunting-yard

algorithm" (en.wikipedia.org/wiki/Shunting-yard_algorithm) describing

how to convert an expression from to postfix notation (reversed Polish

notation), and the article about calculating a postfix expression

(en.wikipedia.org/wiki/Reverse_Polish notation). There are really much

special cases, so be sure to test your solution carefully.

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://en.wikipedia.org/wiki/Reverse_Polish_notation

